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Abstract: Mesenchymal stem cells (MSCs) are multi-potent cells which have been widely used for tissue regeneration 
and immunomodulalion. The infusion of autologous and allogenic MSCs has been proved to be safe and effective in tissue 
repair and disease modu lation. The inherent homing ability of MSCs ensures the transplanted cells migrating into the 
damaged tissue areas, but only a small percentage of the transplanted (allogenic) MSCs survive for long. However. the 
beneficia l effects of MSCs transplantation could be noted within 1-2 days that are unlikely due to their proliferation and 
differentiation. The regulatory roles of MSCs in tissue repair are rather more important than their direct involvement of 
repair processes. The most important effect of transplanted MSCs is their immunomodulation function through crosstalk 
with the immune cells or the paracrine actions. The active factor secreted by MSCs may val}' in the di fferent disease con­
ditions or tissue niches, and are under dynamic changes in various local environments. To understand and define the 
MSCs secretion factors in various disease settings could be a future research direction. and the findings could lead to 
potential new MSCs-based therapeutic products. 
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INTRODUCTION	 and HL A-DR surface mo lecu le ; th ird , these cells can be dif­
fere ntiate d into osteobl ast s, adipocy tes and chondro blasts 

Mesenc hym al ste m cells (MSCs) are multi -potent cell s 
[7]. Recent ly. research ers have proved the pot ent ial of using

which hav e the abili ty to differentiate into multiple cell 
MSCs for different organ regeneration and immunoregul a ­

typ es. includ ing os teoblasts, chondrocytes, and adipocytes 
tion. The effects of MS Cs treatm ent s is contributed by the l l l It also has been proved that MSCs have the potential to 
fo llowtng factors: 1) secretion of growth factors and cytokl­different iate Into ne ura l cells [2]. germ ce lls [3]. cardiomy o ­
nes [B, 9]; 2) suppo rt fo r o ther cell types dur ing tissue regen ­cytes [4], etc. The h isto ry of MSCs could be traced back to 
era tio n [10 -12]; 3) imm unomodulation properti es [13. 14]; 4) 1970 when Friede ns te in and his co-wo rkers first isolated and 
differe ntia tio n into specific ce lls for dam aged orga n tissues cultured fib rob last -like clonogenic stromal ce lls from bone 
[15. 16] (Fig . 1) . However. the cellular effec ts and the trace mar row w hich are multi-po tent progenitor s [5]. These ce lls 
of MSCs after resto ring transplanta tion appea r to be lack ofcan be easi ly expanded and pro mote tissue repa ir. Thus, the 
consideration and rem ain inconclusive [16-1 B]. use of MS Cs has been an innovativ e approach in treatmen t 

of variou s diseases . Currently. there have been more than Trans planted MS Cs can be labeled with different ma rk­
300 clinical trials using MSCs listed on the website of the ers , and tracing of transpl ant ed MSC cell lin eage can be 
United Sta tes Na tio na l Institute of Healt h [6]. based on polymerase chain rea ction [19. 20], Y chromosome 

staining [21], green flu orescent pr otein labeling [22. 23] and T he Intern a tional Society of Cellu lar Therapy has mad e a 
so on [24, 25] . With the deve lop me nt of cell tracking tech­d efinition of MSCs based on three minimal criteria : First, 

these ce lls can be plasti c-adh erent in a standa rd co ndition: nology, new methods like in vi vo Imaging techn iqu es can be 
used for deep tiss ue an d lon g-term tracin g [26. 27]. It has 

lack of C045 , CD 34. COI4 or CDIlb , CD79alpha or CD I9 been proved that systemic injection of MSCs reaches the 
lungs before redi s tributed to the liver, bo ne mar row and 

seco nd , these ce lls express CO lOS, C073 and CD9 0, and 

o the r organs [28] . In order to ga in so me ins ight into the fate 
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Fig. (1), Diagram illustrates the applications of autologous and allogenic MSCs in tissue regeneration and immunomodulation, and their po­
tential underlying mechanisms. 

The Tracking Methods of MSCs In Vivo 

In vivo imaging and labeling meth ods are important tools 
for tracking cells. Fluorescence Imaglng is a suitable and 
easy way for visualizing labeled cells both in vitro and in 
vivo. The green fluorescent protein (GFP) transgenic animals 
and cells, which can be seen in a dark enviro nment, were 
most widely used for cell transplantation experimen ts afte r 
first produced by Okabe In 1997 [221 . Although GFP has 
been documented to be biolog ically inert, it may cause di ­
lated card iomyopathy in GFP transgenic mous e [23] . DNA 
binding dyes like DAPI can provIde a fluor escence Imaging 
after staining and be applicabl e for live cell labeling [291. 
But, DAPI has been proved to have growth-inhibitory effec t 
on MSCs and possess ability to affec t MSC s differenti ation 
130). Transplanted ce lls ca n also be s tained and track ed with 
red fluore scent Oil [31 , 32). Whil e these labelin g method s 
need an additional s taining progress during resuspen slon and 
cannot be tested by bio- assay . 

Another approach for trackin g MSC s is to overexpress 
some reporter gen es, then using spec ific antibody against the 
gene products incorporated in the genomic DNA su ch as 
bromodeoxyuridine (BrdU) , p-galactosid ase , luclferase a nd 
thymidine kinase [33, 341. Other means of more advanced 
techniques have also been devel oped in ord er to track a long­
term changes of the transplanted MSCs in vivo. Magnet ic 
resonance imaging (MRI); single-photon em issi on CT 
(SPECT) and positron emission tom ography (PET), are very 
effective ways to obtain three-dimensional Image in vivo and 
some of these technologies have been successfully used for 
therapeutic tracing of transplanted cell s [35J. Contr ast rea­
gents are needed for tracking ce lls, such as lanth anid e 
chelates [36], superparamagnetic iron oxid e [37], micron -

sized iron oxide particles [38], some unique tracer dye [39] 
and others [40,41]. Yet these methods s till face many chal­
lenges like false positive signals, lack of whole body scan or 
a fast tracer decay [42]. Recently , a lineag e tracing syst em 
has been employed to investigate tbe neuronal commitment 
role of MSC [43). In this system, Cre is driven by a lineage 
specific promoter. Meanwhile, on the other cassate , follow ed 
Rosa 26 promoter is a stop codon flan ked by loxp si tes and a 
report gene (LacZ). A very delicat e example is simultane­
ously elaborate multiple fluor escent prot ein [44] based on 
different Cre-loxp co mbination. By changing the promoter 
sequence before Cre protein. thIs sys tem could be a very 
flexible and useful method to trace the role of MSC in varies 
model and cIrcumstance . Although all present image 
technologies of cell tracking have different disadv antages 
[45]. there is no universal tracer for MSCs tracking in vivo, 
and to choose a most reliable way of labeling the trans­
planted MSCs is essential for s tudy ing the fate and function 
of MSCs in vivo. 

The Use of MSCs in Repairing of Musculoskeletal System 

The gold standard for clinical treatment of large muscu­
loskeletal tissues injury Is to restore or replace the damage 
tissues through surgical procedures. Numbers of therapies 
have been developed for managing bone defects, and it is 
clear that the bone formation or the healing of the defe ct can 
be enhanced by MSCs cell therapy. However, none of cur­
rent therapeutic treatments have proved to be fully successful 
[46]. There are multiple ways of cell implanting duri ng lIs­
sue regeneration, together with vehicles or scaffolds which 
are also known as systemic application or local application . 
The survival of cells after implantation and the total number 
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of cells delivered are the key factors of success [47]. But 
results from most studies proved that only 5% of trans­
planted cells survived after 2 weeks of their administration . 

In 1999. Horwitz and his co-workers has proved the 
therapeutic effects of transplantation of allogeneic MSC into 
three children with osteogenesis imperfect [48]. This study 
also demonstrated the migrating capacity of allogeneic MSC 
which lead the transplanted MSCs migrating to the bone In 
these osteogenesis imperfecta childr en . This ability was first 
known as the "homing" cap acity which marrow-derived 
MSCs can migrate and incorporate to musculoskeletal tissues 
of the recip ient animals \49-51] . The following studies sug­
gested that the mob ilization of autologous MSCs can be in­
duced by trauma [52]. And researchers also determined that 
the transplanted MSCs can migrate to the injury area. MSCs 
expressing Firefly tuctterese were systemically injected into 
the mouse with stabilized tibi a fracture. 1 day after trans­
plantation , MSCs were found In the lungs . The MSCs started 
to localize in the fracture area on the day 3 of transplantation 
and this fluorescence lasted about 14 days . The followtng 
study confirmed this "homing" capacity is dependent on the 
presence of CXCR4 and the cell number reached a saturation 
point on day 7 of transplantation. The histology and me­
chani cal analyses confirmed the improvement of fracture 
healing by more cartilage and newly mineralized bone for ­
malion [53]. 

In another study , researchers Intravenously injected allo­
geneic MSCs into femoral head necrosis animals and traced 
for 6 weeks . Labeled MSCs reached the peak point at 6 
weeks in the necrotic area of femoral heads while these cells 
were not seen after 2 weeks after transplantation in normal 
animals [161. Trauma condition stimulated the migration of 
MSCs have also been confirmed conditions in other animal 
models such as brain injury, lung injury, liver injury and 
burn injury ect [54-57]. 

Chondrogenic differentiation is important characteristic 
of MSCs . The underlying mechanism using MSC cartilage 
repair are: (1) MSCs attenuates inflammatory reaction at the 
injury areas ; (2) cartilage injury area defects replaced by 
chondrogenic MSCs [15]. A fluorescent dye CMTMR [5­
[[ [4-chloromethyl] benzoyl]aminoJ-tetramethylrhodamlne] 
was flrst used by Quintavalla to label goat MSCs and im­
planted into the cartilage defect area with loaded on gelatin 
sponge scaffold [581. During 14 days of implantation. the 
number of fluore scence labeled MSCs reduced over lime . 
The implanted MSCs are found around the defect area and 6 
mm away from the original defect. Compared with the scaf­
fold cultured in vitro. over 70% of cells released from the 
implanted scaffold showed no fluorescence indicating that 
cells from the underlying bone marrow or the surrounding 
environment were recruited into the sponge scaffold during 
the healing progress. The cartilage healing cannot complete 
through implantation of allogeneic MSCs alone. Another 
study used Oil-labeled MSCs to repair the cartilage defect in 
pigs. Labeled cells were seen In the defected area at I week. 
but not at 4 and 12 weeks. The cartilage repair progress 
lasted for at least 3 months, so that the transplantation of 
allogeneic MSCs may act indirectly paracrine releasing re­
pair factors for Improving cartilage repair rather than directly 
repair the defect area [18]. 

Local injection of MSCs directly into the ischaemic area 
is a potential treatment for arterial occlu sion and the limb 
ischaemia. In a pilo t study. autologous bone marrow­
mononuclear cells were injected locally into the ischaemic 
limbs. In all 45 legs. ankle-brachial pressure index level. 
transcutaneous oxygen pressure, rest pain and pain-free 
walking time were all significantly improved in 4 weeks and 
sustained at 24 weeks. The enhanced angiogenesis was due 
to the secreted angiogenic cytokines and the improved func­
tion of endothelial cells [59]. Lian also found MSCs . derived 
from human pluripotent stem cells , have the significant 
therapeutic efficacy in 11mb ischemia model of mouse [60J 
which indicated that the function of transplanted MSCs can 
successfully apply across species. 

It was confirmed that the secreting of IL-5, IL-8 and 
CXCLl from MSCs is important for enhancing function [9J. 
In diabetic rat models. the ischemic muscle metabolism 
neovasculogenesis were improved following MSCs trans­
plantation and incorporation of MSCs to vessels was not 
observed , suggesting that neovasculallzation induced by 
transplantatlon should be mediated through paracrine factors 
[61]. Another study confirmed that MSCs expressed and 
secreted higher level of bFGF. VEGF-A. IL-6 and lL-8 un­
der hypoxic conditlon which can induce angiogenesis. cell 
migration. proliferation and so on [8]. Further study con­
firmed that transplanted MSCs could reduce the cytotoxicity 
and accumulation of natural killer cells under such hypoxic 
situation [621. There were reports that MSCs could secret 
some crucial growth factors like BMP-2 for osteogenesis 
during bone heallng progress; TGF-J3 for chondrogenesis 
during cartilage healing. etc. MSCs could also secrete many 
cytokines that could regulate Inflammatory responses during 
injury. It is uncl ear which ones of these paracrine factors are 
the most important factors as they are mixture and constantly 
changing. During the regeneration of organs. the regulatory 
function of MSCs is more complex . and the factors secreted 
by MSCs are dynamic and responsive to the local environ­
ment. 

The Use of MSCs inOrgan Regeneration 

The use of MSCs transplantation for treating lung [63. 
64], liver [65. 66]. heart [57, 68] and brain Injury [69, 70], 
has been tested in animal models. The therapeutic mecha­
nisms are mainly due to modulating against the inflamma­
tory responses while the engraftment or differentiation prop­
erties of MSCs were not involved [71-74] . GFP-Jabeled 
MSCs have been found crossed the blood-brain barrier and 
then engrafted to injured areas the hippocampus in rats [74]. 
The results suggested that the implanted MSCs can survive 
only a short-term in the brain (20 days) but promote a long­
term change in hippocampal plasticity [72]. Results from 
another study showed that the labeled MSCs accumulated in 
the lung of rats with pulmonary hypertension compared with 
normal rats . After 14 days of transplantation. the number of 
MSCs was decreased from 7.5% to 4.2% indicating that 
these MSCs cannot survive too long in vivo [17] . 

As the most of organs are greatly vascularized tissues, 
the co-culturing of endothelial cells and MSCs can maxi­
mum simulate the co-existence of cells of normal tissues, 
which may promote the cell functions during reparation [75. 
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76J. A higher level of bioch emical factors can be easily de­
tected after co-culture in vitro, this increasing secretion can 
also be proved after transplanted in vivo [77-79]. The cros ­
stalk of MSCs and endothelial cells or other cells can be 
bidIrectional in vitro. Th e cell-cell interaction function and 
the higher level of factors can also improve osteogenesis 
function of MSCs [80]. 

MSCs have been proved to have therapeutic benefit for 
myocardial infarct ion. MSCs secreted factors and regulated 
the function of cardiomyocytes and immature cells during 
repair [81-83] . Vascular endothelial growth factor (VEGF) , 
hepatocyte growth factor (HGF), granulocyte colony stimu­
lating factor (G-CSF), fibroblast growth factor (FGF-2) and 
transforming growth factor beta 1 (TGF-~l) have been iden­
tified as key factors of cardioprotection released by MSCs 
[84]. Some researchers reported that engrafted MSCs could 
differentiate into cardiomyocytes in vivo after local injection 
in addition to their secretion of paracrine factors [78, 79]. 
Following MSCs injection into the heart , most of trans­
planted MSCs were found In the lungs, liver, and spleen, 
only a small part of MSCs disperse within myocardium sug­
gesting that the local integration at the injured area may not 
be necessary in myocardial repair progress [85]. It has been 
proved that transplantation of allogeneic MSCs was useful 
for managing acute myocardial infarction and the improved 
heart function last more than 4 weeks even after the trans­
planted MSCs disappeared [24, 86, 87] . Benefit of MSCs 
was also associated with the time and dose of injection [68, 
74, 88J. However, large amount of MSCs injection can lead 
to massive pulmonary infarction and shall be avoided [88]. 
In 1999, Tomita injected both MSCs and 5-aza cytidine 
treated MSCs were injected into the myocardial scar tlssue 3 
weeks after cryoinjury on the left ventricular wall, and found 
that only 5-azacytidine treated MSCs can inhibit ventricular 
scar formation and improve the contractile function, the 
MSCs transplantations have been proved to increase the cap­
illary density [89]. But 5-azacytidine pre-differentiated 
MSCs Increased their immunogenicity and only survived in 
the first few weeks, while the untreated MSCs could exert a 
longer-term survival [90] . The transplanted MSCs were ca­
pable of increasing blood vess el density and blood flow 
which are beneficlal in protecting the myocytes from further 
ischemic damage [91]. A significant increase of VEGF level 
has been found after MSCs transplantation in rat hearts and 
the transplanted MSCs were further found in the newly 
formed blood vessels [92]. 

The higher expression of active factors by transplanted 
MSCs has also been found in other disease conditions. In the 
diabetic rats, both intramuscularly injected and subcutane­
ously injected MSCs can be detected in the wound area, and 
reached the peak point on day 5: MSCs granulation tissue 
formation and epithelialization of other cells in the wound 
area [931 were seen . The trace of labled-MSCs showed that 
they can be differentlated into endothelial cells and form 
collagen fibers in the blood vessels afte r 4 weeks transplanta­
tion [94]. The same prote ctlve effects of allogeneic MSCs on 
liver was also proved in both acute and chronic liver injury 
models [95-97]. The result of Moslem's study indicated that 
human pluripo tent stem cell derived MSCs also can be an 
alternative cell source for mice liver repair [98]. 
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In chronic kidney Injury, MSCs have been found "hom­
ing" to the sites of inflammation during kidney injury and 
can be differentiated into kidn ey epithelial cells [99, 100]. 
Similar to the mechanism of MSCs promoting myocardial 
repair , current data sugges ted that direct kidney cell differen­
tiation by allogeneic MSCs is not the case in kidney repair 
[11, 12]. Broekema traced labelled MSCs during kidney In­
jury repair, MSCs were first found within the peritubular 
capillaries and interstitium; 8 days later, MSCs were found 
within tubules and only about 2-2.5% of recovered tissues 
were derived from the labelled MSC [101]. On the other 
hand, the paracrine function of the transplanted MSCs playa 
more Important role in kidney injury repair [l 02]. It has been 
proved that MSCs-derived GM-CSF, EGF, CXCLl, IL-6 , 
IL-8, MCP-I, PDGF-AA , and CCL5 can be identified wh ich 
may promote repair of kidney injury by promoting macro­
phage polarization, while which of these factors is the most 
import ant one still remains unknown [77J. 

The Immunomodulatory Function of MSCs In Vivo 

Activation and proliferation of T lymphocytes are the 
main cause of allogeneic transplant rejection [103]. MSCs 
are lack of some immune response-related surface antigens 
including CD40, CD40L, CD80 and CD86, hence the trans ­
planted allogeneic MSCs don 't trigger acute immune attack . 
When co-culturing with peripheral blood lymphocytes, allo­
geneic MSCs don't cause lymphocyte proliferation [13]. The 
immune suppressive function of MSCs against T lympho­
cytes may be due to the contact between the cells and the 
cytokines secreted by MSCs, such as indole amine 2,3­
dioxygenase (IDO) , prostaglandin E2 (PGE2) , transforming 
growth factor-beta (TGF -P) , hepatocyte growth factor 
(HGF), interleukln-l0 (IL-lO), human leukocyte antigen -G 
(HLA -G5), etc [104-107] . It is also found that MSCs can 
help to maintain balance of TH IfTH2 and enhance the pro­
liferation of Treg cells [14]. After 48h of MSCs transplanted 
into sensitized and non-sensitized rats , the MSCs can be de­
tected mainly in spleen of sensitized ones while in non ­
sensitized rats the MSCs were mainly found in the bone mar­
row , where MSCs exert their immunemodulatory functions 
[108]. 

MSCs have also been used in treating autoimmune dis­
eases such as autoimmune encephalltls, inflammatory bowel 
diseases and graft versus host diseases [109, 110]. MSCs 
transplantation improved the survival of mice with the lethal 
dosage radiation-induced injury and attenuated radlation­
induced hematopoietic toxicity, indicating the potential im­
muneprotective role of MSCs [Ill]. 

Graft-versus-host disease (GVHD) is a series of severe 
complications during allogeneic tissue/organ transplant 
which is due to the attack form donor T cells . MSCs have 
been proved to have the ability of reduclng the prevalence of 
GVHD [112]. The use of MSCs instead of immunosuppres­
sive drugs during solid organ transplantation has proved to 
be safe and effective again st GVHD. In the patients with 
kidney transplantation, the infusion of MSC can improve 
graft survival and reduce the dose of immunosuppression 
[113-117]. Koch et st. compared the Intra-arterial and intra­
venous MSCs and found that many animals died following 
Intra-arterial injection because MSCs may block the capillary 
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system of kidney or other abdominal organs. Whereas the 
intravenous injection of MSCs is relatively safe. The reason 
for this is the directly reaching to the capillary system of 
MSC through intra-arterial injection [118]. The graft protec­
tion function of MSCs is T cell related. with the increase of 
Treg cells and the reduction of T-memory cells [41]. MSCs 
is capable of reversing miR-155 expression which can led to 
Th2 differentiation induced by organ transplantation [116]. 
However, the multi-potentiality of MSCs did have the ability 
of restoring vessel endothelium in systemic lupus erythema­
tosus [119J. Now. the using of MSCs as treatment for auto­
Immune diseases such as Crohn's disease, ulcerative colitis. 
multiple sclerosis, amyotrophic lateral sclerosis, systemic 
lupus erythematosus has been accepted as an alterative clini­
cal therapy method [119-124]. 

Focal segmental glomerulosclerosis is known as a dys­
regulation of the immune system resulting in renal failure. A 
13-years-old boy. who presented an immediate recurrence 
after transplantation. received allogeneic MSCs infusion 3 
times and was fully recovered and remain stable after a fol­
low up of 22 months [125]. This renoprotection function of 
Infusion MSCs was also detected in patients of systemic lu­
pus erythematosus [126]. More importantly. multiple trans­
fusions of MSCs provided a better strategy compared to that 
of single dose infusion [119]. Nearly a quarter of patients 
suffering form Crohn's disease need major abdominal sur­
gery [127]. The rational of using MSCs for the treatment of 
Crohn's disease is based on their inhibitory functions on cy­
totoxic T cells. which is highly active in Crohn's disease pa­
tients [128]. The transplantation of MSCs Improved the in­
testinal injury and inhibit ulceration through regulating the 
intestinal epithelial cell niches directly or indirectly [129, 
130]. 

It is believed that immune response also plays an impor­
tant role in the development of diabetes. The transplantation 
of MSCs can successfully depress autoimmunity against 
islets and enhance survival of islets. Also. transplanted 
MSCs has been proved to lower blood glucose levels in dia­
betic animals [131]. However. these results showed the infu­
sion of MSCs had no significant effect on pancreatic p-cell 
differentiation [132]. It is known that transplanted MSCs can 
secret essential factors for pancreatic tissue regeneration, 
such as HGF [133J and MSCs could reverse degenerative p­
cell function through their immunosuppressive property [10]. 
Allogeneic. labeled MSCs can only be detected in pancreas 
and kidney in MSCs-treated diabetic mice. whereas no 
MSCs was seen in the lung, liver. and spleen [134]. 

SUMIVIARY 

The beneficial function of transplanted MSCs has already 
been proved in many therapeutic areas. such as hema­
topoietic reconstitution. Immunomodulation, hepatic regen­
eration and cardiac reperfuslon. The inherent homing ability 
of MSCs ensures the transplanted cells migrating into the 
damaged tissue areas, but only a small percentage of the 
transplanted (allogenic) MSCs survival for long. The benefi­
cial effects of MSCs transplantation could only be noted 
within I -2 days which is not sufficient for cellular growth, 
division and differentiation. During last few years, the using 
of MSCs has had a great change. Researchers paid more and 
more attention on their regulatory role instead of their differ-

Wuetal. 

entiation ability. The regulatory function of transplanted 
MSCs includes both immunomodulation function and secre­
tion function. Both of these two functions may change ac­
cording to the disease conditions or tissue niches. To under­
stand and define the MSCs secretion factors in various dis­
ease settings could be future research direction. The findings 
could lead to potential new MSCs-based therapeutic prod­
ucts. 
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