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Abstract: Mesenchymal stem cells (MSCs) are multi-potent cells which have been widely used for lissue regeneration
and immunomodulation. The infusion of autologous and allogenic MSCs has been proved to be safe and effective in tissue
repair and disease modulation. The inherent homing ability of MSCs ensures the transplanted cells migrating into the
damaged tissue areas, but only a small percentage of the transplanted (zllogenic) MSCs survive for long. However, the
beneficial effects of MSCs transplantation could be noted within 1-2 days that are unlikely due to their proliferation and
differentiation. The regulatory roles of MSCs in tissue repair are rather more important than their direct involvement of
repair processes. The most important effect of transplanted MSCs is their immunomodulation function through crosstalk
with the immune cells or the paracrine actions. The active factor secreted by MSCs may vary in the different disease con-
ditions or tissue niches, and are under dynamic changes in various local environments. To understand and define the
MSCs secretion factors in various disease settings could be a future research direction, and the findings could lead to

potential new MSCs-based therapeutic products,
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INTRODUCTION

Mesenchymal stem cells (MSCs) are multi-potent cells
which have the ability to differentlate into multiple cell
types, including osteoblasts, chondrocytes, and adipocytes
[1]. Tt also has been proved that MSCs have the potential to
differentlate Into neural cells [2], germ cells [3], cardiomyo-
cytes [4], etc. The history of MSCs could be traced back to
1970 when Friedenstein and his co-workers first isolated and
cultured fibroblast-like clonogenic stromal cells from bone
marrow which are multi-potent progenitors [5]. These cells
can be easily expanded and promote tissue repair. Thus, the
use of MSCs has been an innovative approach in treatment
of various diseases. Currently, there have been more than
300 clinical trials using MSCs listed on the website of the
United States National Institute of Health [6].

The International Society of Cellular Therapy has made a
definition of MSCs based on three minimal criteria: First,
these cells can be plastic-adherent in a standard condition;
second, these cells express CD105, CD73 and CDS80, and
lack of CD45, CD34, CD14 or CD11ib, CD78alpha or CD19
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and HLA-DR surface molecule; third, these cells can be dif-
ferentiated into osteoblasts, adipocytes and chondroblasts
[7]. Recently, researchers have proved the potential of using
MSCs for different organ regeneration and immunoregula-
tion. The effects of MSCs treatments is contributed by the
following factors: 1) secretion of growth factors and cytoki-
nes [8, 9]; 2) support for other cell types during tissue regen-
eration [10-12]; 3) immunomodulation properties [13, 14]; 4)
differentiation into specific cells for damaged organ tissues
[15, 16] (Fig. 1). However, the cellular effects and the trace
of MSCs after restoring transplantation appear to be lack of
consideration and remain inconclusive [16-18].

Transplanted MSCs can be labeled with different mark-
ers, and tracing of transplanted MSC cell lineage can be
based on polymerase chain reaction [19, 20], Y chromosome
staining [21], green fluorescent protein labeling [22, 23] and
so on [24, 25]. With the development of cell tracking tech-
nology, new methods like /n Vivo imaging techniques can be
used for deep tissue and long-term tracing [26, 27]. It has
been proved that systemic injection of MSCs reaches the
lungs before redistributed to the liver, bone marrow and
other organs [28]. In order to gain some insight into the fate
and effects of transplanted allogeneic MSCs, we have re-
viewed available literatures and focused on function and fate
of in vivo transplantated allogenic MSCs.
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Fig. (1). Diagram illustrates the applications of autologous and allogenic MSCs in tissue regeneration and immunomodulation, and their po-

tential underlying mechanisms.

The Tracking Methods of MSCs /n Vivo

In vivo imaging and labeling methods are important tools
for tracking cells. Fluorescence imaging Is a sultable and
easy way for visualizing labeled cells both /n vitro and in
vivo. The green fluorescent protein (GFP) transgenic animals
and cells, which can be seen in a dark environment, were
most widely used for cell transplantation experiments after
first produced by Okabe in 1997 [22]. Although GFP has
been documented to be biologically inert, it may cause di-
lated cardiomyopathy in GFP transgenic mouse [23]. DNA
binding dyes like DAPI can provide a fluorescence imaging
after staining and be applicable for live cell labeling [29].
But, DAPI has been proved to have growth-inhibitory effect
on MSCs and possess ability to affect MSCs differentiation
[30]. Transplanted cells can also be stained and tracked with
red fluorescent Dil [31, 32]. While these labeling methods
need an additional staining progress during resuspension and
cannot be tested by bio-assay.

Another approach for tracking MSCs is lo overexpress
some reporter genes, then using specific antibody against the
gene products Incorporated in the genomic DNA such as
bromodeoxyuridine (BrdU), B-galactosidase, luciferase and
thymidine kinase [33, 34]. Other means of more advanced
techniques have also been developed in order to track a long-
term changes of the transplanted MSCs /n vivo. Magnetic
resonance imaging (MRI); single-photon emission CT
(SPECT) and positron emission tomography (PET), are very
effective ways to obtain three-dimensional image /1 vivo and
some of these technologies have been successfully used for
therapeutic tracing of transplanted cells [35]. Contrast rea-
gents are needed for tracking cells, such as lanthanide
chelates [36], superparamagnetic iron oxide [37], micron-

sized iron oxide particles [38], some unique tracer dye [39]
and others [40, 41]. Yet these methods still face many chal-
lenges like false positive signals, lack of whole body scan or
a fast tracer decay [42]. Recently, a lineage tracing system
has been employed to investigate the neuronal commitment
role of MSC [43]. In this system, Cre is driven by a lineage
specific promoter. Meanwhile, on the other cassate, followed
Rosa26 promoter is a stop codon flanked by loxp sites and a
report gene (LacZ). A very delicate example is simultane-
ously elaborate multiple fluorescent protein [44] based on
different Cre-loxp combination. By changing the promoter
sequence before Cre protein, this system could be a very
flexible and useful method to trace the role of MSC in varies
model and circumstance. Although all present image
technologies of cell tracking have different disadvantages
[45], there is no universal tracer for MSCs tracking in vivo,
and to choose a most reliable way of labeling the trans-
planted MSCs Is essential for studying the fate and function
of MSCs /n vivo.

The Use of MSCs in Repairing of Musculoskeletal System

The gold standard for clinical treatment of large muscu-
loskeletal tissues injury is to restore or replace the damage
tissues through surgical procedures. Numbers of therapies
have been developed for managing bone defects, and it is
clear that the bone formation or the healing of the defect can
be enhanced by MSCs cell therapy. However, none of cur-
rent therapeutic treatments have proved to be fully successful
[46]. There are multiple ways of cell implanting during tis-
sue regeneration, together with vehicles or scaffolds which
are also known as systemic application or local application.
The survival of cells after implantation and the total number
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of cells delivered are the key factors of success [47]. But
results from most studies proved that only 5% of trans-
planted cells survived after 2 weeks of their administration.

In 1999, Horwitz and his co-workers has proved the
therapeutic effects of transplantation of allogeneic MSC into
three children with osteogenesis imperfect [48]. This study
also demonstrated the migrating capacity of allogeneic MSC
which lead the transplanted MSCs migrating to the bone in
these osteogenesis imperfecta children. This ability was first
known as the “"homing” capacity which marrow-derived
MSCs can migrate and incorporate to musculoskeletal tissues
of the recipient animals [49-51]. The following studies sug-
gested that the mobilization of autologous MSCs can be in-
duced by trauma [52]. And researchers also determined that
the transplanted MSCs can migrate to the injury area. MSCs
expressing Firefly luciferase were systemically injected into
the mouse with stabilized tibia fracture. 1 day after trans-
plantation, MSCs were found in the Jungs. The MSCs started
to localize in the fracture area on the day 3 of transplantation
and this fluorescence lasted about 14 days. The following
study confirmed this "homing" capacity is dependent on the
presence of CXCR4 and the cell number reached a saturation
point on day 7 of transplantation. The histology and me-
chanical analyses confirmed the improvement of fracture
healing by more cartilage and newly mineralized bone for-
mation [53].

In another study, researchers intravenously injected allo-
geneic MSCs into femoral head necrosis animals and traced
for € weeks. Labeled MSCs reached the peak point at 6
weeks in the necrotic area of femoral heads while these cells
were not seen after 2 weeks after transplantation in normal
animals [16]. Trauma condition stimulated the migration of
MSCs have also been confirmed conditions in other animal
models such as brain injury, lung injury, liver injury and
burn injury ect [54-57].

Chondrogenic differentiation is important characteristic
of MSCs. The underlying mechanism using MSC cartilage
repair are: (1) MSCs attenuates inflammatory reaction at the
injury areas; (2) cartilage injury area defects replaced by
chondrogenic MSCs [15]. A fluorescent dye CMTMR [5-
[[[4-chloromethyl]benzoyl]amino]-tetramethylrhodamine]
was first used by Quintavalla to label goat MSCs and im-
planted into the cartilage defect area with loaded on gelatin
sponge scaffold [58]. During i4 days of implantation, the
number of fluorescence labeled MSCs reduced over time.
The implanted MSCs are found around the defect area and 6
mm away from the original defect. Compared with the scaf-
fold cultured /in vitro, over 70% of cells released from the
implanted scaffold showed no fluorescence indicating that
cells from the underlying bone marrow or the surrounding
environment were recruited into the sponge scaffold during
the healing progress. The cartilage healing cannot complete
through implantation of allogeneic MSCs alone. Another
study used Dil-labeled MSCs to repair the cartilage defect in
pigs. Labeled cells were seen in the defected area at 1 week,
but not at 4 and 12 weeks. The cartilage repair progress
lasted for at least 3 months, so that the transplantation of
allogeneic MSCs may act indirectly paracrine releasing re-
pair factors for improving cartilage repair rather than directly
repair the defect area [18].
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Local injection of MSCs directly into the ischaemic area
is a potential treatment for arterial occlusion and the limb
ischaemia. In a pilot study, autologous bone marrow-
mononuclear cells were injected locally into the ischaemic
limbs. In all 45 legs, ankle-brachial pressure index level,
transcutaneous oxygen pressure, rest pain and pain-free
walking time were all significantly improved in 4 weeks and
sustained at 24 weeks. The enhanced angiogenesis was due
to the secreted angiogenic cytokines and the improved func-
tion of endothelial cells [59]. Lian also found MSCs, derived
from human pluripotent stem cells, have the significant
therapeutic efficacy in limb ischemia model of mouse [60]
which indicated that the function of transplanted MSCs can
successfully apply across species.

It was confirmed that the secreting of IL-6, IL-8 and
CXCLI1 from MSCs is important for enhancing function [9].
In diabetic rat models, the ischemic muscle metabolism
neovasculogenesis were improved following MSCs trans-
plantation and incorporation of MSCs to vessels was not
observed, suggesting that neovasculalization induced by
transplantation should be mediated through paracrine factors
[61]. Another study confirmed that MSCs expressed and
secreted higher level of bFGF, VEGF-A, IL-6 and IL-8 un-
der hypoxic condition which can induce angiogenesis, cell
migration, proliferation and so on [8]. Further study con-
firmed that transplanted MSCs could reduce the cytotoxicity
and accumulation of natural killer cells under such hypoxic
situation [62]. There were reports that MSCs could secret
some crucial growth factors like BMP-2 for osteogenesis
during bone healing progress; TGF-B for chondrogenesis
during cartilage healing, etc. MSCs could also secrete many
cytokines that could regulate Inflammatory responses during
injury. It is unclear which ones of these paracrine factors are
the most important factors as they are mixture and constantly
changing. During the regeneration of organs, the regulatory
function of MSCs is more complex, and the factors secreted
by MSCs are dynamic and responsive to the local environ-
ment.

The Use of MSCs in Organ Regeneration

The use of MSCs transplantation for treating lung (63,
64], liver [65, 66], heart [67, 68] and brain injury [69, 70],
has been tested in animal models. The therapeutic mecha-
nisms are mainly due to modulating against the inflamma-
tory responses while the engraftment or differentiation prop-
ertles of MSCs were not involved [71-74]. GFP-labeled
MSCs have been found crossed the blood-brain barrier and
then engrafted to injured areas the hippocampus in rats [74].
The results suggesied that the implanted MSCs can survive
only a short-term in the brain (20 days) but promote a long-
term change in hippocampal plasticity [72]. Results from
another study showed that the labeled MSCs accumulated in
the lung of rats with pulmonary hypertension compared with
normal rats. After 14 days of transplantation, the number of
MSCs was decreased from 7.5% to 4.2% indicating that
these MSCs cannot survive too long in vivo [17].

As the most of organs are greatly vascularized tissues,
the co-culturing of endothelial cells and MSCs can maxi-
mum simulate the co-existence of cells of normal tissues,
which may promote the cell functions during reparation (75,
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76). A higher level of biochemical factors can be easily de-
tected after co-culture i Viltro, this increasing secretion can
also be proved after transplanted /n vivo [77-79]. The cros-
stalk of MSCs and endothelial cells or other cells can be
bidirectional inn vitro. The cell-cell interaction function and
the higher level of factors can also improve osteogenesis
function of MSCs [80].

MSCs have been proved to have therapeutic benefit for
myocardial infarction. MSCs secreted factors and regulated
the function of cardiomyocytes and immature cells during
repair [81-83]. Vascular endothelial growth factor (VEGF),
hepatocyte growth factor (HGF), granulocyte colony stimu-
lating factor (G-CSF), fibroblast growth factor (FGF-2) and
transforming growth factor beta 1 (TGF-P1) have been iden-
tified as key factors of cardioprotection released by MSCs
[84]. Some researchers reported that engrafted MSCs could
differentiate into cardiomyocytes /n Vivo after local injection
in addition to their secretion of paracrine factors {78, 79].
Following MSCs injection into the heart, most of trans-
planted MSCs were found in the lungs, liver, and spleen,
only a small part of MSCs disperse within myocardium sug-
gesting that the local integration at the injured area may not
be necessary in myocardial repair progress [85]. It has been
proved that transplantation of allogeneic MSCs was useful
for managing acute myocardial infarction and the improved
heart function last more than 4 weeks even after the trans-
planted MSCs disappeared [24, 86, 87|. Benefit of MSCs
was also associated with the time and dose of injection |68,
74, 88). However, large amount of MSCs injection can lead
to massive pulmonary infarction and shall be avoided [88].
In 1999, Tomita injected both MSCs and S5-azacytidine
treated MSCs were injected into the myocardial scar tissue 3
weeks after cryoinjury on the left ventricular wall, and found
that only 5-azacytidine treated MSCs can inhibit ventricular
scar formation and improve the contractile function, the
MSCs transplantations have been proved to increase the cap-
illary density [89]. But 5-azacytidine pre-differentiated
MSCs increased their immunogenicity and only survived in
the first few weeks, while the untreated MSCs could exert a
longer-term survival [90]. The transplanted MSCs were ca-
pable of increasing blood vessel density and blood flow
which are beneficial in protecting the myocytes from further
ischemic damage [91]. A significant increase of VEGF leve]
has been found after MSCs transplantation in rat hearts and
the transplanted MSCs were further found in the newly
formed blood vessels [92].

The higher expression of active factors by transplanted
MSCs has also been found in other disease conditions. In the
diabetic rats, both intramuscularly injected and subcutane-
ously injected MSCs can be detected in the wound area, and
reached the peak point on day 5: MSCs granulation tissue
formation and epithelialization of other cells in the wound
area [93] were seen. The trace of labled-MSCs showed that
they can be differentiated into endothelial cells and form
collagen fibers in the blood vessels after 4 weeks transplanta-
tion [94]. The same protective effects of allogeneic MSCs on
liver was also proved in both acute and chronic liver injury
models [95-97]. The result of Moslem’s study indicated that
human pluripotent stem cell derived MSCs also can be an
alternative cell source for mice liver repair [98].
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In chronic kidney injury, MSCs have been found “hom-
ing” to the sites of inflammation during kidney injury and
can be differentiated into kidney epithelial cells [99, 100].
Similar to the mechanism of MSCs promoting myocardial
repair, current data suggested that direct kidney cell differen-
tiation by allogeneic MSCs is not the case in kidney repair
(11, 12]. Broekema traced labelled MSCs during kidney in-
Jury repair, MSCs were first found within the peritubular
capillaries and interstitium; 8 days later, MSCs were found
within tubules and only about 2-2.5% of recovered tissues
were derived from the labelled MSC [101]. On the other
hand, the paracrine function of the transplanted MSCs play a
more important role in kidney injury repair [102]. It has been
proved that MSCs-derived GM-CSF, EGF, CXCL1, IL-6,
IL-8, MCP-1, PDGF-AA, and CCLS5 can be identified which
may promote repair of kidney injury by promoting macro-
phage polarization, while which of these factors is the most
important one still remains unknown [77].

The Immunomodulatory Function of MSCs /n Vivo

Activation and proliferation of T lymphocytes are the
main cause of allogeneic transplant rejection [103]. MSCs
are lack of some immune response-related surface antigens
including CD40, CD40L, CD80 and CD86, hence the trans-
planted allogeneic MSCs don’t trigger acute immune attack.
When co-culturing with peripheral blood lymphocytes, allo-
geneic MSCs don’t cause lymphocyte proliferation [13]. The
immune suppressive function of MSCs against T lympho-
cytes may be due to the contact between the cells and the
cytokines secreted by MSCs, such as indoleamine 2,3-
dioxygenase (IDOQ), prostaglandin E2 (PGE2), transforming
growth factor-beta (TGF-B), hepatocyte growth factor
(HGF), interleukin-10 (IL-10), human leukocyte antigen-G
(HLA-GB5), etc [104-107]. It is also found that MSCs can
help to maintain balance of THI/TH2 and enhance the pro-
liferation of Treg cells [14]. After 48h of MSCs transplanted
into sensitized and non-sensitized rats, the MSCs can be de-
tected mainly in spleen of sensitized ones while in non-
sensitized rats the MSCs were mainly found in the bone mar-
row, where MSCs exert their immunemodulatory functions
[108].

MSCs have also been used in treating autoimmune dis-
eases such as autoimmune encephalitis, inflammatory bowel
diseases and graft versus host diseases [109, 110]. MSCs
transplantation improved the survival of mice with the lethal
dosage radiation-induced injury and attenuated radiation-
induced hematopoietic toxicity, indicating the potential im-
muneprotective role of MSCs [111].

Graft-versus-host disease (GVHD) is a series of severe
complications during allogeneic tissueforgan transplant
which is due to the attack form donor T cells. MSCs have
been proved to have the ability of reduclng the prevalence of
GVHD [112]. The use of MSCs instead of immunosuppres-
sive drugs during solid organ transplantation has proved to
be safe and effective against GVHD. In the patients with
kidney (ransplantation, the infusion of MSC can improve
graft survival and reduce the dose of immunosuppression
[113-117]. Koch et a/. compared the intra-arterial and intra-
venous MSCs and found that many animals died following
intra-arterial injection because MSCs may block the capillary
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system of kidney or other abdominal organs. Whereas the
intravenous injection of MSCs is relatively safe. The reason
for this is the directly reaching to the capillary system of
MSC through intra-arterial injection [118]. The graft protec-
tion function of MSCs is T cell related, with the increase of
Treg cells and the reduction of T-memory cells [41]. MSCs
is capable of reversing miR-155 expression which can led to
Th2 differentiation induced by organ transplantation [116].
However, the multi-potentiality of MSCs did have the ability
of restoring vessel endothelium in systemic lupus erythema-
tosus [119]. Now, the using of MSCs as treatment for auto-
immune diseases such as Crohn's disease, ulcerative colitis,
multiple sclerosis, amyotrophic lateral sclerosis, systemic
lupus erythematosus has been accepted as an alterative clini-
cal therapy method [119-124].

Focal segmental glomeruloscierosis is known as a dys-
regulation of the immune system resulting in renal failure. A
13-years-old boy, who presented an immediate recurrence
after transplantation, received allogeneic MSCs infusion 3
times and was fully recovered and remain stable after a fol-
low up of 22 months [125]. This renoprotection function of
infusion MSCs was also detected in patients of systemic lu-
pus erythematosus [126]. More importantly, multiple trans-
fusions of MSCs provided a better strategy compared to that
of single dose infusion [119]. Nearly a quarter of patients
suffering form Crohn's disease need major abdominal sur-
gery [127]. The rational of using MSCs for the treatment of
Crohn's disease is based on their Inhibitory functions on cy-
totoxic T cells, which is highly active in Crohn's disease pa-
tients [128]. The transplantation of MSCs Improved the in-
testinal injury and inhibit ulceration through regulating the
intestinal epithelial cell niches directly or indirectly [129,
130].

It is believed that immune response also plays an impor-
tant role in the development of diabetes. The transplantation
of MSCs can successfully depress autoimmunity against
islets and enhance survival of islets. Also, transplanted
MSCs has been proved to lower blood glucose levels in dia-
betic anlmals [131]. However, these results showed the infu-
sion of MSCs had no significant effect on pancreatic p-cell
differentiation [132]. It is known that transplanted MSCs can
secret essential factors for pancreatic tissue regeneration,
such as HGF [133] and MSCs could reverse degenerative p-
cell function through their immunosuppressive property [10].
Allogeneic, labeled MSCs can only be detected in pancreas
and kidney in MSCs-treated diabetic mice, whereas no
MSCs was seen in the lung, liver, and spleen [134].

SUMMARY

The beneficial function of transplanted MSCs has already
been proved in many therapeutic areas, such as hema-
topoietic reconstitution, immunomodulation, hepatic regen-
eration and cardiac reperfusion. The inherent homing ability
of MSCs ensures the transplanted cells migrating into the
damaged tissue areas, but only a small percentage of the
transplanted (allogenic) MSCs survival for long. The benefi-
cial effects of MSCs transplantation could only be noted
within 1-2 days which is not sufficient for cellular growth,
division and differentiation. During last few years, the using
of MSCs has had a great change. Researchers paid more and
more attention on their regulatory role instead of their differ-
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entiation ability. The regulatory function of transplanted
MSCs includes both immunomodulation function and secre-
tion function. Both of these two functions may change ac-
cording to the disease conditions or tissue niches. To under-
stand and define the MSCs secretion factors in various dis-
ease settings could be future research direction. The findings
could lead to potential new MSCs-based therapeutic prod-
ucts.
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